ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ЗАЩИТЫ ПРАВ ПОТРЕБИТЕЛЕЙ И БЛАГОПОЛУЧИЯ ЧЕЛОВЕКА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ НАУКИ «НИЖЕГОРОДСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЭПИДЕМИОЛОГИИ И МИКРОБИОЛОГИИ имени академика И.Н. БЈОХИНОЙ»

G[P]-ГЕНОТИПИРОВАНИЕ РОТАВИРУСОВ С ИСПОЛЬЗОВАНИЕМ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ

Методические рекомендации
[P]-генотипирование ротавирусов с использованием полимеразной цепной реакции: Методические реконендации. - Нижний Новгород: ФГУН ННИИЭМ им. акад. И.Н.Блохиной Роспотебнад3ора, 2007. - 16 c.
$\mathrm{G}[\mathrm{P}]$-генотипирование ротавирусов с использованием полимеразной цепной реакции является новым подходом к дифференциации штаммов ротавируса и включает впервые предложенный авторами способ идентификации субтипов P[8]-генотипа вируса.
$\mathrm{G}[\mathrm{P}]$-генотипирование ротавирусов рекомендуется для мониторинга за циркуляцией геновариантов ротавируса с целью определения спектра $\mathrm{G}[\mathrm{P}]$-типов, идентификации доминирующих типов, установления временных и территориальных особенностей смены их доминирования, что имеет важное значение для теоретической оценки эффективности применения на конкретной территории разработанных ротавирусных вакцин.

Методические рекомендации предназначены для вирусологов, эпидемиологов, врачей-инфекционистов.

Разработаны спешиалистами ФГУН «Нижегородский НИИ эпидемиологии и микробиологии им. академика И.Н. Блохиной» Роспотребнадзора - д.б.н. Н.А. Новиковой, к.б.н. Н.В. Епифановой, к.бै.н. О.Ф. Федоровой

Утверждены заместителем Руководителя Федеральной службы по надзору в свете в сфере защиты прав потребителей и благополучия человека Л.П.Гульченко (№ 0100/4446-07-34 от 27 апреля 2007 г.
«УТВЕРЖДАЮ»

G[P]-ГЕНОТИПИРОВАНИЕ РОТАВИРУСОВ С ИСПОЛЬЗОВАНИЕМ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ

Методические рекомендации

ВВЕДЕНИЕ

В настоящее время ведущая роль ротавирусов (Rotavirus, Reoviridae) в инфекционной кишечной патологии детей первых лет жизни не вызывает сомнений. Однако ротавирусная инфекция остается не управляемой с использованием вакцинопрофилактики в силу высокой изменчивости ротавирусов. Среди ротавирусов определено не менее 15 ти G-серотипов (детерминируется гликопротеином наружного капсида VP7) и 25 -ти [P]-генотипов (детерминируются геном протеазочувствительного белка наружного капсида VP4). У ротавирусов человека наиболее часто встречаются 10 G -типов и $11[\mathrm{P}]$-типов, которые также могут дифференцироваться на субттипы и существовать в различных $\mathrm{G}[\mathrm{P}]$ комбинациях. В связи с этим ВОЗ рекомендует включить в систему эпиднадзора за ротавирусной инфекцией идентификацию типов ротавируса и слежение за их сменой.

Разработанная технология $\mathrm{G}[\mathrm{P}]$ генотипирования является унифицированным способом обнаружения ротавирусов и идентификации штаммов ротавируса, который базируется на обнаружении геномной PHK, определении G-серотипа, P-генотипа и P[8]-субтипа вируса методом обратной транскрипции-полимеразной цепной реакции (ОТ-ПЦР) с использованием оригинальных праймеров и известных праймеров, адаптированных к российским штамма ротавируса.

Использование данной методологии в практике эпиднадзора за ротавирусной инфекцией позволит проводить обнаружение ротавирусов в клиническом материале с целью определения их генотипа. Метод незаменим для определения спектра основных $\mathrm{G}[\mathrm{P}]$ типов ротавируса, идентификации доминирующих типов, установления временных и территориальных особенностей смены их доминирования, что имеет важное значение для теоретической оценки эффективности применения на конкретной территории разработанных ротавирусных вакцин.

2. ОПИСАНИЕ МЕТОДА

2.1. ФОРМУЛА МЕТОДА

Способ генотипирования ротавирусов, включающий обнаружение РНК ротавирусов и ее $\mathrm{G}[\mathrm{P}]$ типирование с помощью реакции обратной транскрипции/полимеразной цепной реакции с использованием универсальных, G- и P-типовых, а также P[8-1] и P[8-2] суб́типовых праймеров (патент № 2264469 от 20.11.2005 г.).

2.2. ПОКАЗАНИЯ И ПРОТИВОПОКАЗАНИЯ К ПРИМЕНЕНИЮ МЕТОДА

- мониторинг за циркуляцией геновариантов ротавируса с целью определения спектра G[P]-типов, идентификации доминируюших типов, установления временных и территориальных особенностей смены их доминирования.

Противопоказания к использованию метода отсутствуют.

2.3. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МЕТОДА

1. Стандартное оборудование дтя ПЦР-ъаборатории.
2. Реагенты для проведения ОТ-ПЦР производства Центрального НИИ эпидемиологии, Москва. (Лицензия: серия ФС-4 000080, №99-04000058 от 11.07. 2005 г.).

- Комплект реагентов для выделения РНК «РИБО-сорб», Кат. №К2-1100.
- Реагенты для обратной транскрипции (ОТ): ревертаза Кат.№ R2-1; 5кратный ОТ-буфер, Кат.№ R2-3; минеральное масло, Кат.№ R6-4; готовая смесь дНТФ для ОТ (5-кратный раствор), Кат.№ R2-4;
- Реагенты для ПЦР анализа: ДиаТак ДНК-полимераза в комплекте с 5кратным ПЦР-буфером, содержащим $15 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, Кат.№ $\mathrm{R} 1-1$; готовая смесь дНТФ для ПЦР (10-кратный раствор), Кат.№ R3-1; деионизованная вода (ДЭПК- $\mathrm{H}_{2} \mathrm{O}$), Кат.№ R2-6; TE-буфер, Кат.№ R-9.
- Комплект реагентов для электрофореза в агарозном геле «ЭФ-200», кат.
№ K5-200

3. Маркер дтин фрагиентов 1000-100 п.н. (производство ЗАО «Силекс», Москва) кат. № D0510.
4. Праі̆меры - синтезируют в научно-производственной фирме «Литех», Москва. (Лицензия: серия МДКЗ №15580/7039 от 18.11.02.).

Последовательности праймеров представлены в табл. 1. Подготовка праймеров к работе: 3 оптические единицы (о.е.) сухого олигонуклеотида растворить в 1 мл ТЕ буфера, разлить в микропроб́ирки по 100 мкл, хранить при минус $20^{\circ} \mathrm{C}$.

Тао̃лица I
Последовательности праймеров

Об́означе- ние праймера	Последовательность	Авторы	Примечание
Ro4-1*	$5-\mathrm{t}(\mathrm{a} / \mathrm{g}) \mathrm{c}$ cac caa tta $\mathrm{a}(\mathrm{a} / \mathrm{g}) \mathrm{a}$ ata c	Gentsch J.R. et al., 1992	Универсальные
Ro4-2*	$5^{\prime}-\operatorname{att} \operatorname{tc}(\mathrm{g} / \mathrm{c})$ gac cat tta ta $(\mathrm{a} / \mathrm{t}) \mathrm{cc}$	Gentsch J.R. et al., 1992	дาя обнаружения РНК ротавирусов
GF	5'- atg tat ggt att gaa tat ac	Бессараб И.Н. и др., 1991	Общщий для Gтипирования
G1R	5^{\prime} - tct tgt caa agc aaa taa tg	Das B.K. et al., 1994	Типоспецифические G-праймеры
G2R	5^{\prime} - gtt aga aat gat tet cca ct	Das B.K. et al., 1994	
G3R*	5'- ctg ttg caa tct ctt c(a/g)a a(c/a)g	Gouvea V. et al., 1990	
G4R	5'- ggg tcg atg gaa aat tct	Das B.K. et al., 1994	
G9R	5'- tat aaa gtc cat tge ac	Das B.K. et al., 1994	
PF*	$5^{\prime}-$ tgg ett cge tea ttt ata gac a	Gentsch J.R. et al., 1992	Об́щий для [P]типирования и суо̄типирования
P[4]R*	5'- cta tt(g/a) tta ga(g/a) gtt aga gtc	Gentsch J.R. et al., 1992	Типоспецифические [P]-праймеры
$\mathrm{P}[6] \mathrm{R}$	5'- tgt tga tta gtt gga ttc aa	Gentsch J.R. et al. 1992	
P[8]R*	5'- tet act ggg (c/t)ta acg tg	Gentsch J. R. et al.. 1992	
P[9]R	5 - tga gac atg caa ttg gac	Gentsch J. R. et al.. 1992	
$\mathrm{P}[8]-1 \mathrm{R}$	5^{\prime} - cca ttt att tga atc gtt a	Федорова О.Ф. и др., 2005	Для P [8]- суӧтипирования
P[8]-2R	5^{\prime} - ccattt atc tga atc att t	Федорова О.Ф. и др., 2005	

* - обозначены праймеры. оригина.тьные последовательности которых модифицированы с учетом обнаруженной вариабелльности

2.4. ОПИСАНИЕ МЕТОДИК

$\mathrm{G}[\mathrm{P}]$-генотипирование ротавирусов включает три этапа, каждый из которых разделен на несколько методик.

Первый этап - обнаружение двунитевой РНК (днРНК) ротавируса в исследуемом образце. Для обнаружения РНК ротавирусов проводят подготовку проб, постановку обратной транскрипции (синтез кДНК), собственно ПЦР с использованием универсальных праймеров Ro4-1 и Ro4-2 и

визуализацию продукта ПЦР методом электрофореза в агарозном геле. Также для генотипирования ротавирусов могут быть использованы образцы фекалий, где ротавирусы идентифицированы другим методом. В этом случае обнаружение РНК ротавируса методом ОТ-ПЦР может служить контрольной постановкой на сохранность РНК в пробе.

На втором этапе пробы, содержащие кДНК ротавируса, используют для определения G-серотипа (последовательности праймеров соответствуют областям гена, определяюшим серотиповые свойства вируса) и Р-генотипа выявленного ротавируса. Проводят мультиплексные ПЦР: для G -типирования - с использованием общего праймера GF и пяти типоспецифических праймеров G1R, G2R. G3R, G4R, G9R, для Pтипирования - с использованием общего праймера PF и четырех типоспецифических - P[4], P[6], P[8], P[9].

На третьем этапе проводят субтипирование РНК Р[8]-генотипа в ПЦР в присутствии праймеров PF и $\mathrm{P}[8]-1 \mathrm{R}$ либо PF и $\mathrm{P}[8]-2 \mathrm{R}$.

I. ОБНАРУЖЕНИЕ РНК РОТАВИРУСОВ

Для обнаружения РНК ротавирусов используют фекалии, концентраты сточных вод. Используют только стерильные микропробирки и наконечники для микродозаторов, все операции проводят в одноразовых перчатках. Забор материала производят в стерильные флаконы. При работе с исходным образцами и материалом, содержащим нуклеиновые кислоты, применяют наконечники с аэрозольным барьером.

При контакте с исследуемыми образцами соблюдают меры предосторожности, предусмотренные для работы с инфекционным материалом, изложенные в Санитарных Правилах 1.2.731-99 «Безопасность работы с микроорганизмами III-IV групп патогенности и гельминтами».

1. Выделение РНК с использованием набора «РИБО-сорб»

- приготовить $10-20 \%$-ную суспензию фекалий в дистиллированной стерильной воде или стерильном физиологическом растворе. Пробы осветлить путем центрифугирования при 3-5 тыс. об/мин в течение 10 мин;
- промаркировать необходимое количество одноразовых пробирок объемом 1,5 мл для обработки проб́ с учетом отрицательного контроля, в качестве которого использовать отрицательный контрольный образец (ОКО);
- в пробирки внести по 450 мкл лизирующего раствора, предварительно прогретого до $60-65^{\circ} \mathrm{C}$;
- в пробирки с лизирующим раствором внести по $\mathbf{1 0 0}$ мкл осветленных исследуемых проб, используя индивидуальные наконечники с аэрозоль-

ным барьером. В пробирку отрицательного контроля (ОК) внести 100 мкл ОКО;

- пробы тшательно перемешать на вортексе и центрифугировать в течение 5 с при 5 тыс.об./мин на микроцентрифуге;
- тщательно ресуспендировать сорбент на вортексе. В каждую пробирку добавить по 25 мкл сорбента. Перемешать на вортексе, оставить в штативе на одну минуту, затем еще раз перемешать и оставить на 5 мин;
- центрифугировать пробирки для осаждения сорбента 30 с при 10 тыс. об./мин. Удалить супернатант, используя вакуумный отсасыватель и отдельный наконечник для каждой пробы;
- внести в пробирки по 400 мкл раствора для отмывки, перемешать на вортексе, кратко центрифугировать при 10 тыс. об./мин., полностью удалить супернатант;
- внести по 500 мкл $\mathbf{7 0} \%$ этанола, ресуспендировать на вортексе, центрифугировать 30 с при 10 тыс. об./мин., полностью удалить супернатант;
- повторить отмывку этанолом;
- внести по 400 мкл ацетона; тщательно ресуспендировать на вортексе, центрифугировать 30 с при 10 тыс. об./мин., полностью удалить супернатант;
- поместить пробирки с открытыми крышками в термостат при 600 C на 5-10 мин.;
- внести по 50 мкл РНК-элюэнта, используя наконечник с аэрозольным барьером; перемешать на вортексе, поместить в термостат при $60^{\circ} \mathrm{C}$ на 2-3 мин.; перемешать на вортексе, центрифугировать в течение 1 мин при 12-13 тыс. об./мин.
- супернатант содержит очищенные РНК, пробы готовы к постановке реакции обратной транскрипции и ПЦР.

Реакцию обратной транскрипции проводят сразу после получения РНК пробы.

2. Проведение реакиии оо́ратной транскрипиии (ОТ,

ПОСТАНОВКА реакции обратной транскрипции в 5 мкл смеси.
Реагенты: ревертаза (MLV-обратная транскриптаза), 5-кратный OTбуфер, минеральное масло, 5-кратный раствор дНТФ для ОТ, праймеры Ro4-1, Ro4-2.

Порядок работы.

- в промаркированные амплификационные пробирки внести по 1 мкл смеси праймеров Ro4-1 и Ro4-2 (1:1);
- внести по 30 мкл минерального масла;
- индивидуальными наконечниками с фильтром внести по 2 мкл исследуемых проб, кратко центрифугировать;
- инкубировать при $94^{\circ} \mathrm{C}$ в течение 1 мин;
- используя только индивидуальные для каждого компонента наконечники, в отдельной пробирке приготовить реакционную смесь для анализа необходимого числа проб (объем компонентов указан в мкл):

Таблица 2

Кол-во проб	1	2	3	4	5	6	7	8	9	10
ОТ-буфер	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
ДНТФ	1.0	2.0	3.0	4.0	5.0	6.0	7,0	8.0	9.0	10.0
Ревертаза	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0

- смесь перемешать пипетированием;
- пробирки вынуть из амплификатора в лед, внести по 2 мкл смеси, кратко центрифугировать;
- пробирки поместить в амплификатор, инкубировать по программе:

$$
42^{\circ} \mathrm{C}-30 \text { мин; } 95^{\circ} \mathrm{C}-5 \text { мин }
$$

3. Проведение полимеразной цепной реакиии ПЦР)

ПОСТАНОВКА ПЦР в 25 мкл смеси:

Реагенты: ДиаТак ДНК-полимераза, укомплектованная 5-кратным ПЦР-буфером, содержащим $15 \mathrm{mM} \mathrm{MgCl}_{2} ; 10$-кратный раствор дНТФ для ПЦР; деионизованная вода, свободная от РНК-аз (ДЭПК-Н $\mathrm{H}_{2} \mathrm{O}$).

Приготовить необходимое количество реакционной смеси:
Таблица 3

Кол-во проб	1	2	3	4	5	6	7	8	9	10
ПЦР-буфер	5	10	15	20	25	30	35	40	45	50
ДНТФ	2.5	5	7.5	10	12,5	15	17.5	20	22,5	25.0
Так-полимераза	0.2	0.4	0,6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
Вода	12,3	24.6	36.9	49.2	61.5	73.8	86.1	98,4	110.7	123

Примечание: праймеры добавлены на стадии OT.

- в амплификационные пробирки, содержацие 5 мкл кДНК, внести по 20 мкл реакционной смеси, кратко центрифугировать;
- инкубировать по программе:
$95^{\circ} \mathrm{C}-1$ мин ($95^{\circ} \mathrm{C}-10$ сек; $55^{\circ} \mathrm{C}-10$ сек; $72^{\circ} \mathrm{C}-10$ сек) - 42 цикла, $72^{\circ} \mathrm{C}-5$ мин.

Конечным продуктом амплификации кДНК является ее фрагмент (аипликон), имеюший специфичный для каждого генома размер, который определяется местоположением праймеров на матрице. Одним из наиболее доступных способов обнаружения ампликонов является элек-

трофорез в агарозном геле, содержащем бромид этидия. В этом случае фрагменты ДНК визуализируются в ультрафиолетовом свете трансиллюминатора в виде ярких светящихся полос, расположенных на уровне полосы положительного контроля или маркера соответствующего размера.
7. Выявление продуктов ПЦР с испотьзованием нао̆ора реагентов «ЭФ200\%
проводят по стандартной методике согласно инструкции производителя набора.

Анализируют результаты. Фрагменты ДНК наблюдаются в виде ярких светящихся оранжевых полос. Положительными на наличие РНК ротавирусов считать пробы, содержащие специфический фрагмент ДНК размером 212 пар нуклеотидов (рис.1), мигрирующий на уровне соответствующего фрагмента маркера размерности ДНК. В отрицательном контрольном образце полосы должны отсутствовать. Наличие в отрицательном контроле специфической полосы ДНК свидетельствует о контаминации реагентов.

II. ОПРЕДЕЛЕНИЕ G[P] ТИПА РОТАВИРУСА

Пробы, содержащие РНК ротавирусов по результатам первого этапа работы, используют для $\mathrm{G}[\mathrm{P}]$ генотипирования со стадии обратной транскрипции.

1. Постановку ОТ проводят, как описано в разделе I-2.

Для определения G -типа используют праймер GF , для определения [P]-типа - праймер PF. Реакцию ставят в отдельных пробирках в объеме 10 мкл, добавляя в каждую пробирку 4 мкл матрицы и 2 мкл соответствующего праймера. Количество остальных ингредиентов, необходимое для приготовления реакционной смеси для постановки в данном объеме, представлено в таблице 4 .

$$
\text { Таблица } 4
$$

Кол-во проб	1	2	3	4	5	6	7	8	9	10
ОТ-буфер	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16,0	18.0	20.0
дНТФ	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0
ревертаза	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0

Синтезированную кДНК затем разводят в 2 раза путем добавления 10 мкл TE-буфера, в итоге в каждой пробирке получают по 20 мкл кДНК, что достаточно для G- и [P]-типирования штамма ротавируса, а

также, в случае необходимости - для Р[8]-субтипирования. На каждую постановку ПЦР используют 5 мкл кДНК.
2. ПЦР проводят в 25 мкл смеси. Готовят необходимое количество реакционной смеси (таблица 5), смесь перемешивают и вносят в амплификационные пробирки по 20 мкл. Затем наслаивают 30 мкл масла, отдельными наконечниками с аэрозольным барьером вносят 5 мкл кДНК. кратко центрифугируют и инкубируют по унифицированной программе, представленной выше (раздел I.3.).

Таблица 5

Кол-во проб	1	2	3	4	5	6	7	8	9	10
ПЦР-буфер	5	10	15	20	25	30	35	40	45	50
дНТФ	2,5	5	7.5	10	12.5	15	17.5	20	22,5	25.0
Праймер R^{*}	0.5	1	1.5	2	2,5	3	3.5	4	4,5	5
Так-полимераза	0,2	0,4	0.6	0,8	1.0	1,2	1,4	1.6	1,8	2,0
Вода	11.8	23,6	35,4	47,2	59,0	70,8	80,5	94,4	106,2	118

* при использовании двух и более типовых R праймеров соответственно уменьшают объем воды; праймер F добавлен на стадии OT.

Для определения P-генотипа ротавируса при постановке ПЦР применяют типовые праймеры - $\mathrm{P}[4] \mathrm{R}, \mathrm{P}[6] \mathrm{R}, \mathrm{P}[8] \mathrm{R}, \mathrm{P}[9] \mathrm{R}$, позволяющие дифференцировать четыре наиболее распространенных [P]-типа ротавируса -4 -й, 6 -й, 8-й и 9-й, соответственно. Праймеры P[4]R, P[8]R, $\mathrm{P}[6] \mathrm{R}$ и $\mathrm{P}[9] \mathrm{R}$, могут быть использованы в одной мультиплексной постановке, так как дают хорошо различимые по размеру фрагменты ДНК (Рис.1).

Для определения G-типа ротавируса при постановке ПЦР применяют типовые праймеры G1R, G2R, G3R, G4R, G9R, позволяющие дифференцировать пять наиболее распространенных G серотипов вируса -1-й, 2-й, 3-й, 4-й, 9-й, соответственно. Праймеры G1R, G2R, G3R, G4R, G9R могут быть использованы в одной мультиплексной постановке, так как дают хорошо различимые по размеру фрагменты ДНК (Рис.2).

Выявление продуктов ПЦР проводят методом электрофореза в агарозном геле.

При типировании штаммов наличие фрагмента ДНК определенного размера свидетельствует о принадлежности исследуемого ротавируса к тому или иному генотипу. При этом следует учитывать, что обнаружение в одной пробе двух специфичных фрагментов ДНК отражает факт одновременного инфицировании больного ротавирусами двух различных G (или P) типов.

III. ДИФФЕРЕНЦИАЦИЯ РОТАВИРУСОВ Р[8] ГЕНОТИПА НА СУБТИПЫ Р[8]-1 И Р[8]-2

кДНК генома ротавирусов $\mathrm{P}[8]$ генотипа применяют для субтипирования с использованием праймеров $\mathrm{P}[8]-1 \mathrm{R}, \mathrm{P}[8]-2 \mathrm{R}$. Так как размер получаемого фрагмента одинаков в обоих случаях, постановку ПЦР осуществляют отдельно с каждым из предложенных субтиповых праймеров как описано выше (II, п.2). Результатом амплификации является специфический фрагмент размером 410 п.н. (Рис.1). Принадлежность штаммов ротавирусов к $\mathrm{P}[8]-1$ или к $\mathrm{P}[8]-2$ субтипу определяют по наличию фрагмента, синтезированного при использовании того или иного праймера.

ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ МЕТОДА

1. Предложенная методология $\mathrm{G}[\mathrm{P}]$ генотипирования ротавирусов с использованием ПЦР основана на использовании праймеров, предложенных в научной литературе. По итогам получения неоднозначных результатов при лабораторном типировании российских изолятов ротавируса, циркулирующего в настоящий период времени, провєдена теоретическая оценка специфичности предложенных в научной литературе типовых праймеров путем сравнительного анализа 56-ти полных нуклеотидных последовательностей генов VP7 и VP4 ротавирусов разных генотипов, представленных в GenBank/EMBL к настоящему времени. C учетом обнаруженной вариабельности последовательностей проведена модификация праймеров для определения $\mathrm{G} 3, \mathrm{P}[8]$ и $\mathrm{P}[4]$ генотипов. Апробация новых версий праймеров на референтных штаммах ротавируса Wa (G1P[8]-1), DS1 (G2P[4]), SAll G3P[2] и природных штаммах ротавирусов с охарактеризованным электрофоретипом РНК показала их эффективность. Так, у части изолятов ротавируса, выделенных в г. Н. Новгороде, и у всех изолятов, выделенных от детей в г. Омске, генотип P[8] был определен только с использованием модифицированного праймера. Праймер RP[4]* позволил определить генотип P[4] у вариантов ротавируса, циркулирующих в настоящее время на территориях г. Н.Новгорода, г. Дзержинска и других городов Нижегородской области. В схему типирования штаммов ротавирусов введено определение суобгенотипа P[8]. Субгенотипирование основанно на оригинальных праймерах, новизна и специфичность которых подтверждена патентом.

Представленные результаты свидетельствуют об́ эффективности методологии $\mathrm{G}[\mathrm{P}]$ генотипирования, основанной на праймерах, адаптированных к российским штаммам ротавируса.
2. При изучении многолетней динамики заболеваемости ротавирусным гастроэнтеритом в Н. Новгороде (1984-2007 гг.) с применением ме-

тодологии $\mathrm{G}[\mathrm{P}]$ генотипирования ротавирусов установлена цикличность проявлений эпидпроцесса ротавирусного гастроэнтерита с периодом 7-8 лет. Показано, что цикличность определяется сменой доминирующего $\mathrm{G}[\mathrm{P}]$ типа ротавируса, сопровождающейся ростом заболеваемости РВГЭ. Зафиксировано существование смены доминирования не только генотипа ротавируса, но и субтипа P[8], что сопровождается измен …ями в клинических проявлениях инфекции. Таким образом, установ. И о, что спектр штаммов ротавируса имеет тенденцию к временному и территориальному перераспределению, что свидетельствует о значимости включения в эпиднадзор за ротавирусами контроля циркуляцией штаммов вируса.

Рис. 2. Схема G-генотипирования штаммов ротавируса человека с использованием OT-IIILP.
Іозиции праймеров указаны по последовательности гена VP7 ротавируса человека шт. Wа (GIP|A|8|), регистрационный номер в базе данных GenBank/EMBL-M21843

G[P]-ГЕНОТИПИРОВАНИЕ РОТАВИРУСОВ С ИСПОЛЬЗОВАНИЕМ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ

Методические рекомендации

Компьютерный набоор и верстка Н.Н.Глухов

Подписано в печать 02.11 .2007 г
Формат 60×90 1'16. Печать трафаретная. Бумага офсетная
Усл. печ. л. 1,0. Тираж 100 экз. Заказ 02/1107

Отпечатано издателем Ю.А.Николаевым
603073. Нижний Новгород. Таганская. 6-29
(831) 250-47-17. e-mail: nyapub a sandy. ru

